The Indistinguishability of the XOR of kPermutations

B. Cogliati, R. Lampe, J. Patarin

University of Versailles

March 4, 2014

We will use the following notations:

- I_n is the set of n-bit strings,
- F_n is the set of functions from I_n to I_n ,
- B_n is the set of permutations of I_n ,
- \tilde{b} is the mean of b.

$$f = f_1 \oplus \ldots \oplus f_k$$

$$f_1,\ldots,f_k\in_R B_n$$

$$F \in_R F_n$$

The advantage $adv_{A,f}$ of an adversary A trying to distinguish the XOR f of k permutations from a truly random function F in less than q queries is:

$$\mathrm{adv}_{A,f,q} = |\mathbb{P}\left(A(f) = 1\right) - \mathbb{P}\left(A(F) = 1\right)|.$$

Our goal is to upper bound the maximal advantage adv_q any adversary can get.

Theorem

Let $k, n \ge 1$, $f_1, \ldots, f_k \in_R B_n$ and $q \le 2^{n-1}/k$ be the number of queries the adversary can ask. Then the advantage to distinguish $f = f_1 \oplus \ldots \oplus f_k$ from a uniformly random function using q queries satisfies:

$$\operatorname{adv}_q \leq 2^{-k(n-1)} * \sum_{0 \leq i \leq q} i^k = O\left(\frac{q^{k+1}}{2^{kn}}\right).$$

The best known attacks for the XOR of k permutations give the following bounds:

$$lacksquare \mathrm{adv}_q \geq \mathcal{O}\left(rac{q(q-1)}{2^{kn}}
ight) ext{ if } q \ll 2^{rac{n}{2}},$$

$$lacksquare$$
 $\operatorname{adv}_q \geq \mathcal{O}\left(rac{q}{2^{(k-\frac{1}{2})n}}
ight)$ if $2^{rac{n}{2}} \ll q \ll 2^n$.

Theorem

Let $n \ge 1$, $f_1, f_2 \in_R B_n$ and $q \ll 2^n$ be the umber of queries asked by the adversary. Then the advantage when trying to distinguish $f = f_1 \oplus f_2$ from a uniformly random function in less than q queries satisfies:

$$\operatorname{adv}_q \leq \mathcal{O}\left(\frac{q}{2^n}\right)$$
.

Let a, b be two sequences of q n-bit strings. $H_q(a, b)$ corresponds to the number of $(f_1, \ldots, f_k) \in B_n^k$ such that

$$\forall i, 1 \leq i \leq q, (f_1 \oplus \ldots \oplus f_k)(a_i) = b_i.$$

$\mathsf{Theorem}$

Let α, β be two positive real numbers. Let $E \subset I_n^q$ such that $|E| \geq (1-\beta)2^{nq}$. Suppose that for every sequences $(a_i)_{1 \leq i \leq q}$, $(b_i)_{1 \leq i \leq q}$ of pairwise distincts n-bit queries such that $(b_i)_{1 \leq i \leq m} \in E$, one has:

$$H_q(a,b) \ge (1-\alpha)\tilde{H}_q$$

Then

$$adv_q \leq \alpha + \beta$$
.

Let a, b be two sequences of q n-bit strings. $H_q(a, b)$ corresponds to the number of $(f_1, \ldots, f_k) \in B_n^k$ such that

$$\forall i, 1 \leq i \leq q, (f_1 \oplus \ldots \oplus f_k)(a_i) = b_i.$$

Theorem

Let α, β be two positive real numbers. Let $E \subset I_n^q$ such that $|E| \geq (1-\beta)2^{nq}$. Suppose that for every sequences $(a_i)_{1 \leq i \leq q}$, $(b_i)_{1 \leq i \leq q}$ of pairwise distincts n-bit queries such that $(b_i)_{1 < i < m} \in E$, one has:

$$H_q(a,b) \geq (1-\alpha)\tilde{H}_q.$$

Then

$$adv_{a} \leq \alpha + \beta$$
.

 $H_q(a,b)$ is the number of $(f_1,\ldots,f_k)\in B_n^k$ such that:

$$\begin{cases}
f_1(a_1) & \oplus & f_2(a_1) & \oplus & \dots & \oplus & f_{k-1}(a_1) & \oplus & f_k(a_1) & = & b_1 \\
\vdots & & \vdots & & & \vdots & \vdots & & \vdots \\
f_1(a_q) & \oplus & f_2(a_q) & \oplus & \dots & \oplus & f_{k-1}(a_q) & \oplus & f_k(a_q) & = & b_q
\end{cases}$$

Since our permutations are fixed on only q queries, what actually matters is the number $h_q(b)$ of solutions of the following system:

 $H_q(a,b)$ is the number of $(f_1,\ldots,f_k)\in B_n^k$ such that:

Since our permutations are fixed on only q queries, what actually matters is the number $h_q(b)$ of solutions of the following system:

$$\begin{cases} P_1^1 \oplus P_1^2 \oplus \dots \oplus P_1^{k-1} \oplus P_1^k = b_1 \\ \vdots & \vdots & \vdots & \vdots \\ P_q^1 \oplus P_q^2 \oplus \dots \oplus P_q^{k-1} \oplus P_q^k = b_q \\ P_i^1 \neq P_j^1 \text{ if } i \neq j \\ \vdots & \vdots & \vdots \\ P_i^k \neq P_j^k \text{ if } i \neq j \end{cases}$$

Lemma

Then for $a, b \in I_n^q$:

$$H_q(a,b) = h_q(b) \left(\frac{|B_n|}{2^n \times \cdots \times (2^n-q+1)} \right)^k$$
.

We want to compute $\frac{H_q}{\tilde{H}_a}=\frac{h_q}{\tilde{h}_a}.$

It is done recursively: we find t such that

$$\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} \ge \frac{h_{\alpha}}{\tilde{h}_{\alpha}} (1-t).$$

Hence

$$rac{h_q}{h_q} \geq (1-t)^q \geq 1-qt.$$

$$adv_q \leq qt$$

We want to compute $\frac{H_q}{\tilde{H}_q} = \frac{h_q}{\tilde{h}_q}$. It is done recursively : we find t such that

$$rac{h_{\alpha+1}}{ ilde{h}_{\alpha+1}} \geq rac{h_{lpha}}{ ilde{h}_{lpha}} (1-t).$$

Hence

$$rac{h_q}{h_q} \geq (1-t)^q \geq 1-qt.$$

$$adv_q \leq qt$$

We want to compute $rac{H_q}{ ilde{H}_q}=rac{h_q}{ ilde{h}_q}.$

It is done recursively : we find t such that

$$\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} \geq \frac{h_{\alpha}}{\tilde{h}_{\alpha}}(1-t).$$

Hence

$$\frac{h_q}{\tilde{h}_q} \ge (1-t)^q \ge 1-qt.$$

$$adv_q \leq qt$$
.

We want to compute $rac{H_q}{ ilde{H}_q}=rac{h_q}{ ilde{h}_q}.$

It is done recursively: we find t such that

$$\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} \geq \frac{h_{\alpha}}{\tilde{h}_{\alpha}}(1-t).$$

Hence

$$\frac{h_q}{\tilde{h}_q} \ge (1-t)^q \ge 1-qt.$$

$$adv_q \leq qt$$
.

Our goal is to compute $h_{\alpha+1}$ from h_{α} , i.e. the number of $(P_i^j)_{1 \leq i \leq m, 1 \leq j \leq k}$ such that:

$$\begin{bmatrix} P_{\alpha+1}^1 \\ P_{\alpha+1}^1 \\ \end{bmatrix} \oplus \begin{bmatrix} P_{\alpha+1}^2 \\ P_{\alpha+1}^2 \\ \end{bmatrix} \oplus \begin{bmatrix} P_{\alpha+1}^k \\ P_{\alpha+1}^2 \\ \end{bmatrix} \oplus \begin{bmatrix} P_{\alpha+1}^k \\ P_{\alpha+1}^2 \\ \end{bmatrix} = b_{\alpha+1}$$

$$\begin{bmatrix} P_{\alpha}^1 \\ P_{\alpha}^2 \\ \vdots \\ P_{\alpha}^2 \end{bmatrix} \oplus \begin{bmatrix} P_{\alpha+1}^k \\ P_{\alpha}^2 \\ \vdots \\ P_{\alpha+1}^k \end{bmatrix} \oplus \begin{bmatrix} P_{\alpha+1}^k \\ P_{\alpha+1}^k \\ \vdots \\ P_{\alpha+1}^k \end{bmatrix} \oplus \begin{bmatrix} P_{\alpha+1}^k \\ P_{\alpha+1}^k \\ \vdots \\ P_{\alpha+1}^k \end{bmatrix} = b_{\alpha+1}$$

Pairwise distinct messages

$$P_{\alpha+1}^{1} \oplus P_{\alpha+1}^{2} \oplus \ldots \oplus P_{\alpha+1}^{k-1} \oplus P_{\alpha+1}^{k} = b_{\alpha+1}$$

$$\boxed{P_{\alpha}^{1}} \oplus \boxed{P_{\alpha}^{2}} \oplus \ldots \oplus \boxed{P_{\alpha}^{k-1}} \oplus \boxed{P_{\alpha}^{k}} = b_{\alpha}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\boxed{P_{1}^{1}} \oplus \boxed{P_{1}^{2}} \oplus \ldots \oplus \boxed{P_{1}^{k-1}} \oplus \boxed{P_{1}^{k}} = b_{1}$$

Pairwise distinct messages

Theorem

If
$$q < \frac{2^n}{12}$$
 and $k \ge 3$,

adv
$$\leq \frac{kq^2 \cdot 2^n}{(2^n - q)^k} + 12 \frac{q^{k+2}}{(2^n - 3q)(2^n - q)^k}$$
 (1)
 $\leq \frac{kq^2}{2^{(k-1)n}(1 - k\frac{q}{2^n})} + 12 \frac{q^{k+2}}{2^{(k+1)n}(1 - (k+3)\frac{q}{2^n})}.$ (2)

$$\leq \frac{kq^2}{2^{(k-1)n}(1-k\frac{q}{2^n})} + 12\frac{q^{k+2}}{2^{(k+1)n}(1-(k+3)\frac{q}{2^n})}.$$
 (2)

Theorem

Let α, β be two positive real numbers. Let $E \subset I_n^q$ such that $|E| \geq (1-\beta)2^{nq}$. Suppose that for every sequence $(a_i)_{1 \leq i \leq q}$, $(b_i)_{1 < i < q}$ of pairwise distinct messages, $(b_i)_{1 < i < m} \in E$, we have:

$$H(a,b) \geq (1-\alpha)\tilde{H}_q$$
.

Then

$$adv_q \le \alpha + \beta.$$

Using this theorem and the Bienaymé-Tchebitchev's inequality, we get:

$$\operatorname{adv}_{q} \leq 2 \left(\frac{\mathsf{V}[H_{q}(a)]}{\tilde{H}_{q}(a)^{2}} \right)^{1/3} = 2 \left(\frac{\mathsf{V}[h_{q}]}{\tilde{h}_{q}^{2}} \right)^{1/3}$$
$$\leq 2 \left(\frac{\lambda_{q}}{U_{q}} - 1 \right)^{1/3} ,$$

where $U_q:=2^{nq}\tilde{h_q}^2$ and λ_q is the number of sequences P^1,P^2,\ldots,P^{2k} of q pairwise distinct messages such that $P^1\oplus\ldots\oplus P^{2k}=0$

The advantage any adversary can get with q queries, where $q \leq \frac{2^n}{2L}$, satisfies:

$$\mathrm{adv}_q \leq 2 \left(\left(1 + \frac{q2^n}{(2^n - q)^{2k}} + \frac{2kq^{2k+1}}{\left(1 - \frac{2kq}{2^n}\right)2^n(2^n - q)^{2k}} \right)^q - 1 \right)^{1/3} \ .$$

i.e.

$$\operatorname{adv}_q \lesssim 2 \left(\frac{q^2}{2^{(2k-1)n}(1-rac{q}{2^n})^{2k}} + rac{2kq^{2k+2}}{2^{(2k+1)n}(1-rac{6kq}{2^n})}
ight)^{1/3}.$$

technique	S. Lucks	Н	H_{σ}
security bound	$O\left(\frac{q^{k+1}}{2^{kn}}\right)$	$O\left(\frac{q^{k+2}}{2^{(k+1)n}}\right)$	$O\left(\left(\frac{q^{2k+2}}{2^{(2k+1)n}}\right)^{1/3}\right)$

Figure : Upper bound for n = 40, k = 5

Figure: Upper bound for n = 40, k = 5

Future work and open problems

Our results can be further improved by using the techniques recursively, as in the original articles from J. Patarin.

These proof techniques (especially the H_{σ} coefficients) can be used on (both balanced and unbalanced) Feistel schemes.

Open problem: what happens in the third area?

Thank you for your attention.