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The Indistinguishability of the XOR of k Permutations

Presentation of the problem

We will use the following notations:
In is the set of n−bit strings,
Fn is the set of functions from In to In,
Bn is the set of permutations of In,
b̃ is the mean of b.
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Presentation of the problem

f = f1 ⊕ . . .⊕ fk

f1, . . . , fk ∈R Bn

F ∈R Fn
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Presentation of the problem

The advantage advA,f of an adversary A trying to distinguish the
XOR f of k permutations from a truly random function F in less
than q queries is:

advA,f ,q = |P (A(f ) = 1)− P (A(F ) = 1) |.

Our goal is to upper bound the maximal advantage advq any
adversary can get.
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Previous results

About the XOR of k permutations

Theorem

Let k , n ≥ 1, f1, . . . , fk ∈R Bn and q ≤ 2n−1/k be the number of
queries the adversary can ask. Then the advantage to distinguish
f = f1 ⊕ . . .⊕ fk from a uniformly random function using q queries
satisfies:

advq ≤ 2−k(n−1) ∗
∑

0≤i≤q
ik = O

(
qk+1

2kn

)
.
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Previous results

About the XOR of k permutations

The best known attacks for the XOR of k permutations give the
following bounds:

advq ≥ O
(
q(q−1)

2kn

)
if q � 2

n
2 ,

advq ≥ O
(

q

2(k−
1
2 )n

)
if 2

n
2 � q � 2n.
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Previous results

About the XOR of 2 permutations

Theorem

Let n ≥ 1, f1, f2 ∈R Bn and q � 2n be the umber of queries asked
by the adversary. Then the advantage when trying to distinguish
f = f1 ⊕ f2 from a uniformly random function in less than q queries
satisfies:

advq ≤ O
( q

2n
)
.



The Indistinguishability of the XOR of k Permutations

The H Coefficient Technique

Let a, b be two sequences of q n-bit strings.Hq(a, b) corresponds to
the number of (f1, . . . , fk) ∈ Bk

n such that

∀i , 1 ≤ i ≤ q, (f1 ⊕ . . .⊕ fk)(ai ) = bi .

Theorem

Let α, β be two positive real numbers. Let E ⊂ I qn such that
|E | ≥ (1− β)2nq. Suppose that for every sequences (ai )1≤i≤q,
(bi )1≤i≤q of pairwise distincts n-bit queries such that
(bi )1≤i≤m ∈ E , one has:

Hq(a, b) ≥ (1− α)H̃q.

Then
advq ≤ α+ β.
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The H Coefficient Technique

Hq(a, b) is the number of (f1, . . . , fk) ∈ Bk
n such that:

f1(a1) ⊕ f2(a1) ⊕ . . . ⊕ fk−1(a1) ⊕ fk(a1) = b1
...

...
...

...
...

f1(aq) ⊕ f2(aq) ⊕ . . . ⊕ fk−1(aq) ⊕ fk(aq) = bq

Since our permutations are fixed on only q queries, what actually
matters is the number hq(b) of solutions of the following system:

P1
1 ⊕ P2

1 ⊕ . . . ⊕ Pk−1
1 ⊕ Pk

1 = b1
...

...
...

...
...

P1
q ⊕ P2

q ⊕ . . . ⊕ Pk−1
q ⊕ Pk

q = bq
P1
i 6= P1

j if i 6= j
...
Pk
i 6= Pk

j if i 6= j
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The H Coefficient Technique

Lemma

Then for a, b ∈ I qn :

Hq(a, b) = hq(b)

(
|Bn|

2n × · · · × (2n − q + 1)

)k

.
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The H Coefficient Technique

We want to compute Hq

H̃q
=

hq
h̃q
.

It is done recursively : we find t such that

hα+1

h̃α+1
≥ hα

h̃α
(1− t).

Hence
hq

h̃q
≥ (1− t)q ≥ 1− qt.

Then, using the relationship between hq and the advantage,

advq ≤ qt.
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The H Coefficient Technique

Our goal is to compute hα+1 from hα, i.e. the number of
(P j

i )1≤i≤m,1≤j≤k such that:

P1
α+1 ⊕ P2

α+1 ⊕ . . . ⊕ Pk−1
α+1 ⊕ Pk

α+1 = bα+1

P1
α ⊕ P2

α ⊕ . . . ⊕ Pk−1
α ⊕ Pk

α = bα

...
...

...
...

...

P1
1 ⊕ P2

1 ⊕ . . . ⊕ Pk−1
1 ⊕ Pk

1 = b1

Pairwise distinct messages
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The H Coefficient Technique

Theorem

If q < 2n
12 and k ≥ 3,

adv ≤ kq2.2n

(2n − q)k
+ 12

qk+2

(2n − 3q)(2n − q)k
(1)

≤ kq2

2(k−1)n(1− k q
2n )

+ 12
qk+2

2(k+1)n(1− (k + 3) q
2n )

. (2)
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The Hσ coefficient technique

Theorem

Let α, β be two positive real numbers. Let E ⊂ I qn such that
|E | ≥ (1− β)2nq. Suppose that for every sequence (ai )1≤i≤q,
(bi )1≤i≤q of pairwise distinct messages, (bi )1≤i≤m ∈ E , we have:

H(a, b) ≥ (1− α)H̃q.

Then
advq ≤ α+ β.
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The Hσ coefficient technique

Using this theorem and the Bienaymé-Tchebitchev’s inequality, we
get:

advq ≤ 2

(
V [Hq(a)]

H̃q(a)2

)1/3

= 2

(
V [hq]

h̃2
q

)1/3

≤ 2
(
λq
Uq
− 1
)1/3

,

where Uq := 2nqh̃q
2
and λq is the number of sequences

P1,P2, . . . ,P2k of q pairwise distinct messages such that
P1 ⊕ . . .⊕ P2k = 0
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The Hσ coefficient technique

The advantage any adversary can get with q queries, where
q ≤ 2n

2k , satisfies:

advq ≤ 2

1+
q2n

(2n − q)2k
+

2kq2k+1(
1− 2kq

2n

)
2n(2n − q)2k

q

− 1

1/3

.

i.e.

advq > 2

(
q2

2(2k−1)n(1− q
2n )

2k +
2kq2k+2

2(2k+1)n(1− 6kq
2n )

)1/3

.
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Our results

technique S. Lucks H Hσ

security bound O
(
qk+1

2kn

)
O
(

qk+2

2(k+1)n

)
O

((
q2k+2

2(2k+1)n

)1/3
)
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Our results

Figure : Upper bound for n = 40, k = 5
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Future work and open problems

Our results can be further improved by using the techniques
recursively, as in the original articles from J. Patarin.

These proof techniques (especially the Hσ coefficients) can be used
on (both balanced and unbalanced) Feistel schemes.
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Future work and open problems

1 2
n
2

2n
O(k) 2n − 1

q

H Hσ

Open problem: what happens in the third area?
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Future work and open problems

Thank you for your attention.
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